Gohalt ๐Ÿ‘ฎโ€โ™€๐Ÿ›‘: Fast; Simple; Powerful; Go Throttler library

gohalt

Gohalt ๐Ÿ‘ฎโ€โ™€ ๐Ÿ›‘ : Fast; Simple; Powerful; Go Throttler library

lint test report version license godoc

go get -u github.com/1pkg/gohalt

Introduction

Gohalt is simple and convenient yet powerful and efficient throttling go library. Gohalt provides various throttlers and surronding tools to build throttling pipelines and rate limiters of any complexity adjusted to your specific needs. Gohalt provides an easy way to integrate throttling and rate limiting with your infrastructure through built in middlewares.

Features

  • Blastly fast and efficient, Gohalt has minimal performance overhead, it was design with performance as the primary goal.

  • Flexible and powerful, Gohalt supports numbers of different throttling strategies and conditions that could be easily combined and customized to match your needs link.

  • Easy to integrate, Gohalt provides separate package with numbers of built in middlewares for simple (couple lines of code) integrations with stdlib and other libraries, among which are: io, rpc/grpc, http, sql, gin, etc.

  • Metrics awareness, Gohalt could use Prometheus metrics as a conditions for throttling.

  • Queueing and delayed processing, Gohalt supports throttling queueing which means you can easily save throttled query to rabbitmq/kafka stream to process it later.

  • Durable storage, Gohalt has embedded k/v storage to provide thtottling persistence and durability.

  • Meta awareness, Gohalt provides easy way to access inner throttlers state in form of meta that can be later exposed to logging, headers, etc.

Concepts

Gohalt uses Throttler as the core interface for all derived throttlers and surronding tools.

// Throttler defines core gohalt throttler abstraction and exposes pair of counterpart methods: `Acquire` and `Release`.
type Throttler interface {
	// Acquire takes a part of throttling quota or returns error if throttling quota is drained
	// it needs to be called right before shared resource acquire.
	Acquire(context.Context) error
	// Release puts a part of throttling quota back or returns error if this is not possible
	// it needs to be called just after shared resource release.
	Release(context.Context) error
}

Throttler interface exposes pair of counterpart methods: Acquire takes a part of throttling quota or returns error if throttling quota is drained and needs to be called right before shared resource acquire; Release puts a part of throttling quota back or returns error if this is not possible and needs to be called just after shared resource release; Note: all derived throttler implementations are thread safe, so they could be used concurrently without additional locking. Note: all acquired throttlers should be released exatly the same amount of times they have been acquired. Note: despite throttler Release method has the same signature as Acquire has, Release implementations should try to handle any internal error gracefully and return error back rarely, nevertheless all errors returned by Release should be handeled by client.

In Gohalt throtllers could be easily combined with each other to build complex pipelines. There are multiple composite throttlers (all, any, ring, pattern, not, generator, etc) as well as leaf throttlers (timed, latency, monitor, metric, percentile, etc) to work with in Gohalt. If you don't find in existing throttlers the one that fits your needs you can create custom throttler by implementing Throttler interface. Such custom throttler should work with existing Gohalt throttlers and tools out of box.

Gohalt includes multiple supporting surrounding tools to make throttling more sugary.

// Runnable defined by typical abstract async func signature.
// Runnable is used by `Runner` as a subject for execution.
type Runnable func(context.Context) error
// Runner defines abstraction to execute a set of `Runnable`
// and return possible execution error back.
// Runner is designed to simplify work with throttlers
// by managing `Acquire`/`Release` loop.
type Runner interface {
	// Run executes single prodived `Runnable` instance.
	Run(Runnable)
	// Result returns possible execution error back.
	Result() error
}

Runnable and Runner define slim abstraction for executable and executor in Gohalt. Runner insterface aims to provide similar interface as errgroup.Group does. So to run a single executable use Run to wait and get result use Result. There are two runners implementations in Gohalt:

  • sync func NewRunnerSync(ctx context.Context, thr Throttler) Runner
  • async func NewRunnerAsync(ctx context.Context, thr Throttler) Runner Both implementation accept throttler and context as input arguments and handle all throttling cycle internaly. This way client donesn't need to call neither Acquire nor Release manually, all this is done by the runner. This way the only thing that needs to be done to add throttling to existing code wrap existing executable by Runnable. The only difference between sync and async runner is that the async runner starts each new Runnable inside new goroutine and uses locks for its imternal state. Note: You can't use sync runner in async fashion with go syncr.Run(func(context.Context) error{}) this will cause data race, use async runner instead async.Run(func(context.Context) error{}).

Last but not least Gohalt uses context heavily inside and there are multiple helpers to provide data via context for throttles, see throttles list to know when to use them.

// WithTimestamp adds the provided timestamp to the provided context
// to determine latency between `Acquire` and `Release`.
// Resulted context is used by: `latency` and `percentile` throtttlers.
func WithTimestamp(ctx context.Context, ts time.Time) context.Context
// WithPriority adds the provided priority to the provided context
// to differ `Acquire` priority levels.
// Resulted context is used by: `priority` throtttler.
func WithPriority(ctx context.Context, priority uint8) context.Context
// WithKey adds the provided key to the provided context
// to add additional call identifier to context.
// Resulted context is used by: `pattern` and `generator` throtttlers.
func WithKey(ctx context.Context, key string) context.Context
// WithMessage adds the provided message to the provided context
// to add additional message that need to be used to context.
// Resulted context is used by: `enqueue` throtttler.
func WithMessage(ctx context.Context, message interface{}) context.Context
// WithMarshaler adds the provided marshaler to the provided context
// to add additional message marshaler that need to be used to context.
// Resulted context is used by: `enqueue` throtttler.
// Used in pair with `WithMessage`.
func WithMarshaler(ctx context.Context, mrsh Marshaler) context.Context
// WithParams facade call that respectively calls:
// - `WithTimestamp`
// - `WithPriority`
// - `WithKey`
// - `WithMessage`
// - `WithMarshaler`
func WithParams(ctx context.Context, ts time.Time, priority uint8, key string, message interface{}, marshaler Marshaler) context.Context

Also there is yet another throttling sugar func WithThrottler(ctx context.Context, thr Throttler, freq time.Duration) context.Context related to context. Which defines context implementation that uses parrent context plus throttler internally. Using it you can keep typical context patterns for cancelation handling and apply and combine it with throttling.

select {
	case <-ctx.Done():
		return ctx.Error()
	default:
}

If internal context throttler is throttling context done chanel will be closed respectively. Note such behavior is implemented by throttler long pooling with the specified frequency, so efficiently there will be additional throttling user in form of long pooling goroutine.

// complex throttler example
thr := NewThrottlerAll( // throttles only if all children throttle
	NewThrottlerPattern(
		Pattern{ // use throttler only if provided key matches `192.*.*.*` submask
			Pattern: regexp.MustCompile(`192\.[0-9]+\.[0-9]+\.[0-9]+`),
			Throttler: NewThrottlerAny( // throttles if any children throttles
				// throttles only if latency is above 50 millisecond
				NewThrottlerLatency(50*time.Millisecond, 5*time.Second),
				// throttles only if cpu usage is above 70%
				NewThrottlerMonitor(NewMonitorSystem(time.Minute), Stats{CPUUsage: 0.7}),
			),
		},
	),
	// throttles each not 3rd call
	NewThrottlerNot(NewThrottlerEach(3)),
	// enqueues provided message to queue
	NewThrottlerEnqueue(NewEnqueuerRabbit("amqp://user:pass@localhost:5672/vhost", "queue", time.Minute)),
)

In gohalt v0.4.0 breaking change is introduced to replace all untyped errors with two major error types:

  • ErrorThreshold which defines error type that occurs if throttler reaches specified threshold.
  • ErrorInternal which defines error type that occurs if throttler internal error happens. You can find list of returning error types for all existing throttlers in throttlers table bellow or in documentation.
    Note: not every gohalt throttler must return error; some throttlers might cause different side effects like logging or call to time.Sleep instead.

Throttlers

Throttler Definition Description
echo func NewThrottlerEcho(err error) Throttler Always throttles with the specified error back.
- could return any specified error;
wait func NewThrottlerWait(duration time.Duration) Throttler Always waits for the specified duration.
square func NewThrottlerSquare(duration time.Duration, limit time.Duration, reset bool) Throttler Always waits for square growing [1, 4, 9, 16, ...] multiplier on the specified initial duration, up until the specified duration limit is reached.
If reset is set then after throttler riches the specified duration limit next multiplier value will be reseted.
jitter func NewThrottlerJitter(initial time.Duration, limit time.Duration, reset bool, jitter float64) Throttler Waits accordingly to undelying square throttler but also adds the provided jitter delta distribution on top.
Jitter value is normalized to [0.0, 1.0] range and defines which part of square delay could be randomized in percents.
Implementation uses secure crypto/rand as PRNG function.
context func NewThrottlerContext() Throttler Always throttless on done context.
- could return ErrorInternal;
panic func NewThrottlerPanic() Throttler Always panics with ErrorInternal.
each func NewThrottlerEach(threshold uint64) Throttler Throttles each periodic i-th call defined by the specified threshold.
- could return ErrorThreshold;
before func NewThrottlerBefore(threshold uint64) Throttler Throttles each call below the i-th call defined by the specified threshold.
- could return ErrorThreshold;
after func NewThrottlerAfter(threshold uint64) Throttler Throttles each call after the i-th call defined by the specified threshold.
- could return ErrorThreshold;
past func NewThrottlerPast(threshold time.Time) Throttler Throttles each call befor timestamp defined by the specified UTC time threshold.
- could return ErrorThreshold;
future func NewThrottlerFuture(threshold time.Time) Throttler Throttles each call after timestamp defined by the specified UTC time threshold.
- could return ErrorThreshold;
chance func NewThrottlerChance(threshold float64) Throttler Throttles each call with the chance p defined by the specified threshold.
Chance value is normalized to [0.0, 1.0] range.
Implementation uses secure crypto/rand as PRNG function.
- could return ErrorThreshold;
running func NewThrottlerRunning(threshold uint64) Throttler Throttles each call which exeeds the running quota acquired - release q defined by the specified threshold.
- could return ErrorThreshold;
buffered func NewThrottlerBuffered(threshold uint64) Throttler Waits on call which exeeds the running quota acquired - release q defined by the specified threshold until the running quota is available again.
priority func NewThrottlerPriority(threshold uint64, levels uint8) Throttler Waits on call which exeeds the running quota acquired - release q defined by the specified threshold until the running quota is available again.
Running quota is not equally distributed between n levels of priority defined by the specified levels.
Use func WithPriority(ctx context.Context, priority uint8) context.Context to override context call priority, 1 by default.
timed func NewThrottlerTimed(threshold uint64, interval time.Duration, quantum time.Duration) Throttler Throttles each call which exeeds the running quota acquired - release q defined by the specified threshold in the specified interval.
Periodically each specified interval the running quota number is reseted.
If quantum is set then quantum will be used instead of interval to provide the running quota delta updates.
- could return ErrorThreshold;
latency func NewThrottlerLatency(threshold time.Duration, retention time.Duration) Throttler Throttles each call after the call latency l defined by the specified threshold was exeeded once.
If retention is set then throttler state will be reseted after retention duration.
Use func WithTimestamp(ctx context.Context, ts time.Time) context.Context to specify running duration between throttler acquire and release.
- could return ErrorThreshold;
percentile func NewThrottlerPercentile(threshold time.Duration, capacity uint8, percentile float64, retention time.Duration) Throttler Throttles each call after the call latency l defined by the specified threshold was exeeded once considering the specified percentile.
Percentile values are kept in bounded buffer with capacity c defined by the specified capacity.
If retention is set then throttler state will be reseted after retention duration.
Use func WithTimestamp(ctx context.Context, ts time.Time) context.Context to specify running duration between throttler acquire and release.
- could return ErrorThreshold;
monitor func NewThrottlerMonitor(mnt Monitor, threshold Stats) Throttler Throttles call if any of the stats returned by provided monitor exceeds any of the stats defined by the specified threshold or if any internal error occurred.
Builtin Monitor implementations come with stats caching by default.
Use builtin NewMonitorSystem to create go system monitor instance.
- could return ErrorInternal;
- could return ErrorThreshold;
metric func NewThrottlerMetric(mtc Metric) Throttler Throttles call if boolean metric defined by the specified boolean metric is reached or if any internal error occurred.
Builtin Metric implementations come with boolean metric caching by default.
Use builtin NewMetricPrometheus to create Prometheus metric instance.
- could return ErrorInternal;
- could return ErrorThreshold;
enqueuer func NewThrottlerEnqueue(enq Enqueuer) Throttler Always enqueues message to the specified queue throttles only if any internal error occurred.
Use func WithMessage(ctx context.Context, message interface{}) context.Context to specify context message for enqueued message and func WithMarshaler(ctx context.Context, mrsh Marshaler) context.Context to specify context message marshaler.
Builtin Enqueuer implementations come with connection reuse and retries by default.
Use builtin func NewEnqueuerRabbit(url string, queue string, retries uint64) Enqueuer to create RabbitMQ enqueuer instance or func NewEnqueuerKafka(net string, url string, topic string, retries uint64) Enqueuer to create Kafka enqueuer instance.
- could return ErrorInternal;
adaptive func NewThrottlerAdaptive(threshold uint64, interval time.Duration, quantum time.Duration, step uint64, thr Throttler) Throttler Throttles each call which exeeds the running quota acquired - release q defined by the specified threshold in the specified interval.
Periodically each specified interval the running quota number is reseted.
If quantum is set then quantum will be used instead of interval to provide the running quota delta updates.
Provided adapted throttler adjusts the running quota of adapter throttler by changing the value by d defined by the specified step, it subtracts d^2 from the running quota if adapted throttler throttles or adds d to the running quota if it doesn't.
- could return ErrorThreshold;
pattern func NewThrottlerPattern(patterns ...Pattern) Throttler Throttles if matching throttler from provided patterns throttles.
Use func WithKey(ctx context.Context, key string) context.Context to specify key for regexp pattern throttler matching.
Pattern defines a pair of regexp and related throttler.
- could return ErrorInternal;
- could return any underlying throttler error;
ring func NewThrottlerRing(thrs ...Throttler) Throttler Throttles if the i-th call throttler from provided list throttle.
- could return ErrorInternal;
- could return any underlying throttler error;
all func NewThrottlerAll(thrs ...Throttler) Throttler Throttles call if all provided throttlers throttle.
- could return ErrorInternal;
any func NewThrottlerAny(thrs ...Throttler) Throttler Throttles call if any of provided throttlers throttle.
- could return ErrorInternal;
not func NewThrottlerNot(thr Throttler) Throttler Throttles call if provided throttler doesn't throttle.
- could return ErrorInternal;
suppress func NewThrottlerSuppress(thr Throttler) Throttler Suppresses provided throttler to never throttle.
retry func NewThrottlerRetry(thr Throttler, retries uint64) Throttler Retries provided throttler error up until the provided retries threshold.
If provided onthreshold flag is set even ErrorThreshold errors will be retried.
Internally retry uses square throttler with DefaultRetriedDuration initial duration.
- could return any underlying throttler error;
cache func NewThrottlerCache(thr Throttler, cache time.Duration) Throttler Caches provided throttler calls for the provided cache duration, throttler release resulting resets cache.
Only non throttling calls are cached for the provided cache duration.
- could return any underlying throttler error;
generator func NewThrottlerGenerator(gen Generator, capacity uint64, eviction float64) Throttler Creates new throttler instance that throttles if found key matching throttler throttles.
If no key matching throttler has been found generator used insted to provide new throttler that will be added to existing throttlers map.
Generated throttlers are kept in bounded map with capacity c defined by the specified capacity and eviction rate e defined by specified eviction value is normalized to [0.0, 1.0], where eviction rate affects number of throttlers that will be removed from the map after bounds overflow.
Use WithKey to specify key for throttler matching and generation.
- could return ErrorInternal;
- could return any underlying throttler error;
semaphore func NewThrottlerSemaphore(weight int64) Throttler Creates new throttler instance that throttles call if underlying semaphore throttles.
Use WithWeight to override context call weight, 1 by default.
- could return ErrorThreshold;

Integrations

Note: in gohalt v0.3.0 all integrations were moved to separate repository to make base gohalt repository dependencies footprint small.

go get -u github.com/1pkg/gohaltlib

Library Adapter
gin func NewMiddlewareGin(thr Throttler, with GinWith, on GinOn) gin.HandlerFunc
stdlib http handler func NewMiddlewareStd(h http.Handler, thr Throttler, with StdWith, on StdOn) http.Handler
echo func NewMiddlewareEcho(thr Throttler, with EchoWith, on EchoOn) echo.MiddlewareFunc
beego func NewMiddlewareBeego(thr Throttler, with BeegoWith, on BeegoOn) beego.FilterFunc
kit func NewMiddlewareKit(thr Throttler, with KitWith, on KitOn) endpoint.Middleware
mux func NewMiddlewareMux(h http.Handler, thr Throttler, with MuxWith, on MuxOn) http.Handler
httprouter func NewMiddlewareRouter(h http.Handler, thr Throttler, with RouterWith, on RouterOn) http.Handler
reveal func NewMiddlewareRevel(thr Throttler, with RevealWith, on RevealOn) revel.Filter
iris func NewMiddlewareIris(thr Throttler, with IrisWith, on IrisOn) iris.Handler
fasthttp func NewMiddlewareFast(h fasthttp.RequestHandler, thr Throttler, with FastWith, on FastOn) fasthttp.RequestHandler
stdlib rt func NewRoundTripperStd(rt http.RoundTripper, thr Throttler, with RoundTripperStdWith, on RoundTripperStdOn) http.RoundTripper
fasthttp rt func NewRoundTripperFast(rt RoundTripperFast, thr Throttler, with RoundTripperFastWith, on RoundTripperFastOn) RoundTripperFast
stdlib rpc client coded func NewRPCClientCodec(cc rpc.ClientCodec, thr Throttler, with RPCCodecWith, on RPCCodecOn) rpc.ClientCodec
stdlib rpc server coded func NewRPCServerCodec(sc rpc.ServerCodec, thr Throttler, with RPCCodecWith, on RPCCodecOn) rpc.ServerCodec
grpc client stream func NewGRPCClientStream(cs grpc.ClientStream, thr Throttler, with GRPCStreamWith, on GRPCStreamOn) grpc.ClientStream
grpc server stream func NewGrpServerStream(ss grpc.ServerStream, thr Throttler, with GRPCStreamWith, on GRPCStreamOn) grpc.ServerStream
go-micro client func NewMicroClient(thr Throttler, with MicroClientWith, on MicroOn) client.Wrapper
go-micro server func NewMicroHandler(thr Throttler, with MicroServerWith, on MicroOn) server.HandlerWrapper
stdlib net conn func NewNetConn(conn net.Conn, thr Throttler, with NetConnWith, on NetConnOn, mode NetConnMode) net.Conn
stdlib sql func NewSQLClient(cli SQLClient, thr Throttler, with SQLClientWith, on SQLClientOn) SQLClient
stdlib io reader func NewReader(r io.Reader, thr Throttler, with RWWith, on RWOn) io.Reader
stdlib io writer func NewWriter(w io.Writer, thr Throttler, with RWWith, on RWOn) io.Writer

Licence

Gohalt is licensed under the MIT License.
See LICENSE for the full license text.

Owner
Kostiantyn Masliuk
Kostiantyn Masliuk
Comments
  • add throttler storage abstraction and multiple durable storage implementations

    add throttler storage abstraction and multiple durable storage implementations

    After https://github.com/1pkg/gohalt/issues/1 is implemented we could use marshaled state to store it in persistent storage and unmarshal it back to new throttler. In this issue we need to add storage abstraction that could be accepted and called by existing runners. And add couple of durable storage implementations.

  • add throttler logger abstraction and logger abstraction implementation

    add throttler logger abstraction and logger abstraction implementation

    After https://github.com/1pkg/gohalt/issues/1 is implemented we could use marshaled state to do extra info logging. In this issue we need to add logger abstraction that could be accepted and called by existing runners. And add an implementation for logger.

  • throttlers inner state marshal/unmarshal

    throttlers inner state marshal/unmarshal

    In order to have durable storage, logging, meta exposure for all throttlers. Gohalt needs to have a way how to marshal and unmarshal inner states for all existing throttlers. This can be implemented as a pair of (MarshalBinary() (data []byte, err error), UnmarshalBinary(data []byte) error) methods or something similar. Note that there might be additional difficulties with composite throttlers.

  • add integration tests for enqueuers metrics monitors

    add integration tests for enqueuers metrics monitors

    Currently gohalt has only unit tests. Though overall coverage is great and all throttlers and tools around are covered 100% it still lacks coverage for enqueuers metrics monitors. It's nice to have small docker-compose file with full infrastructure RMQ, Kafka, Prom and small set of integration tests to cover basic happy scenarios for current enqueuers metrics monitors implementations

  • throttlers integrations split

    throttlers integrations split

    After rethinking it seems that putting integrations with big list of third party libraries wasn't the good idea. Sure it simplifies integration usage as you need to get a single repo but also it introduces lots of unnecessary dependencies if only throttlers are needed. It is supposed to be bad practice to introduce unnecessary dependencies in places where they could be avoided. This way I believe gohalt needs to be split into two repos: original gohalt will contain all throttlers and surrounding tools and second one that will contain all thirdparty integrations mainly integrations.go file.

A simple and powerful SSH keys manager
A simple and powerful SSH keys manager

SKM is a simple and powerful SSH Keys Manager. It helps you to manage your multiple SSH keys easily! Features Create, List, Delete your SSH key(s) Man

Dec 17, 2022
Cloversim - Simple and powerful tool for Clover simulation
Cloversim - Simple and powerful tool for Clover simulation

Clover sim Simple and powerful tool for Clover simulation How to setup mkdir clo

Jul 23, 2022
Build powerful pipelines in any programming language.
Build powerful pipelines in any programming language.

Gaia is an open source automation platform which makes it easy and fun to build powerful pipelines in any programming language. Based on HashiCorp's g

Jan 3, 2023
Automatically capture all potentially useful information about each executed command (as well as its output) and get powerful querying mechanism
Automatically capture all potentially useful information about each executed command (as well as its output) and get powerful querying mechanism

nhi is a revolutionary tool which automatically captures all potentially useful information about each executed command and everything around, and delivers powerful querying mechanism.

Nov 29, 2022
Fast cross-platform HTTP benchmarking tool written in Go

bombardier bombardier is a HTTP(S) benchmarking tool. It is written in Go programming language and uses excellent fasthttp instead of Go's default htt

Jan 2, 2023
Fast, concurrent, streaming access to Amazon S3, including gof3r, a CLI. http://godoc.org/github.com/rlmcpherson/s3gof3r

s3gof3r s3gof3r provides fast, parallelized, pipelined streaming access to Amazon S3. It includes a command-line interface: gof3r. It is optimized for

Dec 26, 2022
Automatically deploy from GitHub to Replit, lightning fast โšก๏ธ

repl.deploy Automatically deploy from GitHub to Replit, lightning fast โšก๏ธ repl.deploy is split into A GitHub app, which listens for code changes and s

Dec 22, 2022
Fast docker image distribution plugin for containerd, based on CRFS/stargz
Fast docker image distribution plugin for containerd, based on CRFS/stargz

[ โฌ‡๏ธ Download] [ ?? Browse images] [ โ˜ธ Quick Start (Kubernetes)] [ ?? Quick Start (nerdctl)] Stargz Snapshotter Read also introductory blog: Startup C

Dec 29, 2022
Fast directory traversal for Golang

godirwalk godirwalk is a library for traversing a directory tree on a file system. In short, why do I use this library? It's faster than filepath.Walk

Dec 27, 2022
Container Registry Synchronization made easy and fast

?? booster - Makes synchronization of container images between registries faster.

May 12, 2022
KinK is a helper CLI that facilitates to manage KinD clusters as Kubernetes pods. Designed to ease clusters up for fast testing with batteries included in mind.
KinK is a helper CLI that facilitates to manage KinD clusters as Kubernetes pods. Designed to ease clusters up for fast testing with batteries included in mind.

kink A helper CLI that facilitates to manage KinD clusters as Kubernetes pods. Table of Contents kink (KinD in Kubernetes) Introduction How it works ?

Dec 10, 2022
a fast changelog generator sourced from PRs and Issues

chronicle A fast changelog generator that sources changes from GitHub PRs and issues, organized by labels. chronicle --since-tag v0.16.0 chronicle --s

Nov 19, 2022
FaaSNet: Scalable and Fast Provisioning of Custom Serverless Container Runtimes at Alibaba Cloud Function Compute (USENIX ATC'21)

FaaSNet FaaSNet is the first system that provides an end-to-end, integrated solution for FaaS-optimized container runtime provisioning. FaaSNet uses l

Jan 2, 2023
Fast, Docker-ready image processing server written in Go and libvips, with Thumbor URL syntax

Imagor Imagor is a fast, Docker-ready image processing server written in Go. Imagor uses one of the most efficient image processing library libvips (w

Dec 30, 2022
Next generation recitation assignment tool for 6.033. Modular, scalable, fast

Next generation recitation assignment tool for 6.033. Modular, scalable, fast

Feb 3, 2022
A simple and flexible health check library for Go.

Health A simple and flexible health check library for Go. Documentation ยท Report Bug ยท Request Feature Table of Contents Getting started Synchronous v

Jan 4, 2023
A simple project (which is visitor counter) on kubernetesA simple project (which is visitor counter) on kubernetes

k8s playground This project aims to deploy a simple project (which is visitor counter) on kubernetes. Deploy steps kubectl apply -f secret.yaml kubect

Dec 16, 2022
Simple-go-api - This porject deploys a simple go app inside a EKS Cluster

SimpleGoApp This porject deploys a simple go app inside a EKS Cluster Prerequisi

Jan 19, 2022