Yet another Binance Smart Chain client based on TrustFi Network

TrustFi Smart Chain

The goal of TrustFi Smart Chain is to bring programmability and interoperability to Binance Chain. In order to embrace the existing popular community and advanced technology, it will bring huge benefits by staying compatible with all the existing smart contracts on Ethereum and Ethereum tooling. And to achieve that, the easiest solution is to develop based on go-ethereum fork, as we respect the great work of Ethereum very much.

TrustFi Smart Chain starts its development based on go-ethereum fork. So you may see many toolings, binaries and also docs are based on Ethereum ones, such as the name “geth”.

But from that baseline of EVM compatible, TrustFi Smart Chain introduces a system of 21 validators with Proof of Staked Authority (PoSA) consensus that can support short block time and lower fees. The most bonded validator candidates of staking will become validators and produce blocks. The double-sign detection and other slashing logic guarantee security, stability, and chain finality.

Cross-chain transfer and other communication are possible due to native support of interoperability. Relayers and on-chain contracts are developed to support that. Binance DEX remains a liquid venue of the exchange of assets on both chains. This dual-chain architecture will be ideal for users to take advantage of the fast trading on one side and build their decentralized apps on the other side. The TrustFi Smart Chain will be:

  • A self-sovereign blockchain: Provides security and safety with elected validators.
  • EVM-compatible: Supports all the existing Ethereum tooling along with faster finality and cheaper transaction fees.
  • Interoperable: Comes with efficient native dual chain communication; Optimized for scaling high-performance dApps that require fast and smooth user experience.
  • Distributed with on-chain governance: Proof of Staked Authority brings in decentralization and community participants. As the native token, BNB will serve as both the gas of smart contract execution and tokens for staking.

More details in White Paper.

Key features

Proof of Staked Authority

Although Proof-of-Work (PoW) has been approved as a practical mechanism to implement a decentralized network, it is not friendly to the environment and also requires a large size of participants to maintain the security.

Proof-of-Authority(PoA) provides some defense to 51% attack, with improved efficiency and tolerance to certain levels of Byzantine players (malicious or hacked). Meanwhile, the PoA protocol is most criticized for being not as decentralized as PoW, as the validators, i.e. the nodes that take turns to produce blocks, have all the authorities and are prone to corruption and security attacks.

Other blockchains, such as EOS and Cosmos both, introduce different types of Deputy Proof of Stake (DPoS) to allow the token holders to vote and elect the validator set. It increases the decentralization and favors community governance.

To combine DPoS and PoA for consensus, TrustFi Smart Chain implement a novel consensus engine called Parlia that:

  1. Blocks are produced by a limited set of validators.
  2. Validators take turns to produce blocks in a PoA manner, similar to Ethereum's Clique consensus engine.
  3. Validator set are elected in and out based on a staking based governance on Binance Chain.
  4. The validator set change is relayed via a cross-chain communication mechanism.
  5. Parlia consensus engine will interact with a set of system contracts to achieve liveness slash, revenue distributing and validator set renewing func.

Light Client of Binance Chain

To achieve the cross-chain communication from Binance Chain to TrustFi Smart Chain, need introduce a on-chain light client verification algorithm. It contains two parts:

  1. Stateless Precompiled contracts to do tendermint header verification and Merkle Proof verification.
  2. Stateful solidity contracts to store validator set and trusted appHash.

Native Token

BNB will run on TrustFi Smart Chain in the same way as ETH runs on Ethereum so that it remains as native token for TSC. This means, BNB will be used to:

  1. pay gas to deploy or invoke Smart Contract on TSC
  2. perform cross-chain operations, such as transfer token assets across TrustFi Smart Chain and Binance Chain.

Building the source

Many of the below are the same as or similar to go-ethereum.

For prerequisites and detailed build instructions please read the Installation Instructions on the wiki.

Building geth requires both a Go (version 1.13 or later) and a C compiler. You can install them using your favourite package manager. Once the dependencies are installed, run

make geth

or, to build the full suite of utilities:

make all

Executables

The tsc project comes with several wrappers/executables found in the cmd directory.

Command Description
geth Main TrustFi Smart Chain client binary. It is the entry point into the TSC network (main-, test- or private net), capable of running as a full node (default), archive node (retaining all historical state) or a light node (retrieving data live). It has the same and more RPC and other interface as go-ethereum and can be used by other processes as a gateway into the TSC network via JSON RPC endpoints exposed on top of HTTP, WebSocket and/or IPC transports. geth --help and the CLI Wiki page for command line options.
abigen,bootnode,evm, gethrpctest,rlpdump,puppeth These binaries are exactly the same as the binaries built in go-ethereum repo.

Running geth

Going through all the possible command line flags is out of scope here (please consult our CLI Wiki page).

Hardware Requirements

The hardware must meet certain requirements to run a full node.

  • VPS running recent versions of Mac OS X or Linux.
  • 500 GB of free disk space
  • 8 cores of CPU and 16 gigabytes of memory (RAM) for mainnet.
  • 4 cores of CPU and 8 gigabytes of memory (RAM) for testnet.
  • A broadband Internet connection with upload/download speeds of at least 1 megabyte per second

A Full node on the Rialto test network

Steps:

  1. Download the binary, config and genesis files from release, or compile the binary by make geth.
  2. Init genesis state: ./geth --datadir node init genesis.json.
  3. Start your fullnode: ./geth --config ./config.toml --datadir ./node.
  4. Or start a validator node: ./geth --config ./config.toml --datadir ./node -unlock ${validatorAddr} --mine --allow-insecure-unlock. The ${validatorAddr} is the wallet account address of your running validator node.

Note: The default p2p port is 30311 and the RPC port is 8575 which is different from Ethereum.

More details about running a node and becoming a validator.

Note: Although there are some internal protective measures to prevent transactions from crossing over between the main network and test network, you should make sure to always use separate accounts for play-money and real-money. Unless you manually move accounts, geth will by default correctly separate the two networks and will not make any accounts available between them.

Programmatically interfacing geth nodes

As a developer, sooner rather than later you'll want to start interacting with geth and the TrustFi Smart Chain network via your own programs and not manually through the console. To aid this, geth has built-in support for a JSON-RPC based APIs (standard APIs and geth specific APIs). These can be exposed via HTTP, WebSockets and IPC (UNIX sockets on UNIX based platforms, and named pipes on Windows).

The IPC interface is enabled by default and exposes all the APIs supported by geth, whereas the HTTP and WS interfaces need to manually be enabled and only expose a subset of APIs due to security reasons. These can be turned on/off and configured as you'd expect.

HTTP based JSON-RPC API options:

  • --rpc Enable the HTTP-RPC server
  • --rpcaddr HTTP-RPC server listening interface (default: localhost)
  • --rpcport HTTP-RPC server listening port (default: 8545)
  • --rpcapi API's offered over the HTTP-RPC interface (default: eth,net,web3)
  • --rpccorsdomain Comma separated list of domains from which to accept cross origin requests (browser enforced)
  • --ws Enable the WS-RPC server
  • --wsaddr WS-RPC server listening interface (default: localhost)
  • --wsport WS-RPC server listening port (default: 8546)
  • --wsapi API's offered over the WS-RPC interface (default: eth,net,web3)
  • --wsorigins Origins from which to accept websockets requests
  • --ipcdisable Disable the IPC-RPC server
  • --ipcapi API's offered over the IPC-RPC interface (default: admin,debug,eth,miner,net,personal,shh,txpool,web3)
  • --ipcpath Filename for IPC socket/pipe within the datadir (explicit paths escape it)

You'll need to use your own programming environments' capabilities (libraries, tools, etc) to connect via HTTP, WS or IPC to a geth node configured with the above flags and you'll need to speak JSON-RPC on all transports. You can reuse the same connection for multiple requests!

Note: Please understand the security implications of opening up an HTTP/WS based transport before doing so! Hackers on the internet are actively trying to subvert TSC nodes with exposed APIs! Further, all browser tabs can access locally running web servers, so malicious web pages could try to subvert locally available APIs!

License

The tsc library (i.e. all code outside of the cmd directory) is licensed under the GNU Lesser General Public License v3.0, also included in our repository in the COPYING.LESSER file.

The tsc binaries (i.e. all code inside of the cmd directory) is licensed under the GNU General Public License v3.0, also included in our repository in the COPYING file.

Owner
TrustFi Network
Trusted DeFi Liquidity Solutions Built on Web 3.0.
TrustFi Network
Similar Resources

The Fabric Smart Client is a new Fabric Client that lets you focus on the business processes and simplifies the development of Fabric-based distributed application.

Fabric Smart Client The Fabric Smart Client (FSC, for short) is a new Fabric client-side component whose objective is twofold. FSC aims to simplify th

Dec 14, 2022

A phoenix Chain client based on the go-ethereum fork,the new PoA consensus engine is based on the VRF algorithm.

Phoenix Official Golang implementation of the Phoenix protocol. !!!The current version is for testing and developing purposes only!!! Building the sou

Apr 28, 2022

Akroma GO client - Akroma is an EVM based application development platform (smart-contracts).

Akroma Akroma is an EVM based application development platform (smart-contracts). Akroma will utilize a Masternode system, and build out an Oracle pla

Dec 11, 2022

Huobi Eco Chain client based on the go-ethereum fork

The Huobi Open Platform is a unified infrastructure platform based on the technical, traffic and ecological resources of the Huobi Group, and will be gradually open to the blockchain industry.

Dec 31, 2022

This repo is some SDK of Binance

Binance API Go Language SDK This is a Binance Go language sdk that uses a method similar to HuobiRDCenter/huobi_Golang Official Documents Please make

Jun 1, 2021

A Golang cryptocurrency trading API & Library. Support Binance, BitMEX, Deribit, Bybit, Huobi DM, OKEX Futures and more.

A Golang cryptocurrency trading API & Library. Support Binance, BitMEX, Deribit, Bybit, Huobi DM, OKEX Futures and more.

CREX 中文 | English CREX 是一个用Golang语言开发的量化交易库。支持tick级别数字币期货平台的回测和实盘。实盘与回测无缝切换,无需更改代码。 回测 示例 @backtest 交易结果 开源策略 https://github.com/coinrust/trading-stra

Nov 18, 2022

Tradingview-2-exchange - Place buy/sell orders in exchange(binance) when trading view strategy raise alert message

TradingView-2-Exchange This application is used to place a buy/sell order in Bin

Sep 27, 2022

An interoperable smart contract hub

An interoperable smart contract hub

Juno An interoperable smart contract hub which automatically executes, controls or documents a procedure of relevant events and actions according to t

Jan 1, 2023

DERO: Secure, Anonymous Blockchain with Smart Contracts. Subscribe to Dero announcements by sending mail to [email protected] with subject: subscribe announcements

DERO: Secure, Anonymous Blockchain with Smart Contracts.  Subscribe to Dero announcements by sending mail to lists@dero.io with subject: subscribe announcements

Welcome to the Dero Project DERO News Forum Wiki Explorer Source Twitter Discord Github Stats WebWallet Medium Table of Contents ABOUT DERO PROJECT DE

Dec 7, 2022
A Binance Smart Chain client based on the go-ethereum fork

A Binance Smart Chain client based on the go-ethereum fork

Dec 31, 2022
A Binance Smart Chain client based on the erigon fork

Erigon Erigon is an implementation of Ethereum (aka "Ethereum client"), on the efficiency frontier, written in Go. System Requirements Usage Getting S

Sep 17, 2022
A Binance Smart Chain client based on the go-ethereum fork

Binance Smart Chain The goal of Binance Smart Chain is to bring programmability and interoperability to Binance Chain. In order to embrace the existin

Feb 8, 2022
XT Smart Chain, a chain based on the go-ethereum fork

XT Smart Chain XT Smart Chain (XSC) is a decentralized, high-efficiency and ener

Dec 28, 2022
Community-run technology powering the cryptocurrency, and decentralized applications on TrustFi Network

Go TrustFi-Ethereum Official Golang implementation of the TrustFi-Ethereum protocol. Automated builds are available for stable releases and the unstab

May 26, 2021
A Binance Chain vanity address generator written in golang.
A Binance Chain vanity address generator written in golang.

VaniBNB A Binance Chain vanity address generator written in golang. For example address ending with 0xkat Raw https://github.com/makevoid/vanieth http

Sep 9, 2022
Yet another filecoin secondary retrieval client
Yet another filecoin secondary retrieval client

fcr Yet another filecoin secondary retrieval client FCR is a filecoin secondary retrieval client featured with the ability to participate in an ipld r

Nov 9, 2022
Running chaincode in development mode: Smart contract developers that want to iteratively develop and test their chaincode packages without the overhead of the smart contract lifecycle process for every update.

Fabric DEVMODE - Nano bash 1 ORG + 1 PEER + 1 ORDERER Based on fabric-samples/test-network-nano-bash, but using devmode fabric peer Prereqs Follow the

May 14, 2022
Berylbit PoW chain using Ethash, EPI-Burn and geth. The chain will be using bot congestion flashbot bundles through nodes

Berylbit PoW chain using Ethash, EPI-Burn and geth. The chain will be using bot congestion flashbot bundles through nodes. Soon, We will work towards

Jun 30, 2022
Go-chain - EVM-compatible chain secured by the Lachesis consensus algorithm

ICICB galaxy EVM-compatible chain secured by the Lachesis consensus algorithm. B

Jun 8, 2022